Normal Curves in 4-Dimensional Galilean Space G4

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A characterization of curves in Galilean 4-space $G_4$

‎In the present study‎, ‎we consider a regular curve in Galilean‎ ‎$4$-space $mathbb{G}_{4}$ whose position vector is written as a‎ ‎linear combination of its Frenet vectors‎. ‎We characterize such‎ ‎curves in terms of their curvature functions‎. ‎Further‎, ‎we obtain‎ ‎some results of rectifying‎, ‎constant ratio‎, ‎$T$-constant and‎ ‎$N$-constant curves in $mathbb{G}_{4}$‎.

متن کامل

Lagrangian Curves in a 4-dimensional affine symplectic space

Lagrangian curves in R entertain intriguing relationships with second order deformation of plane curves under the special affine group and null curves in a 3-dimensional Lorentzian space form. We provide a natural affine symplectic frame for Lagrangian curves. It allows us to classify Lagrangrian curves with constant symplectic curvatures, to construct a class of Lagrangian tori in R and determ...

متن کامل

Parallel Transport Frame in 4 -dimensional Euclidean Space

In this work, we give parallel transport frame of a curve and we introduce the relations between the frame and Frenet frame of the curve in 4-dimensional Euclidean space. The relation which is well known in Euclidean 3-space is generalized for the …rst time in 4-dimensional Euclidean space. Then we obtain the condition for spherical curves using the parallel transport frame of them. The conditi...

متن کامل

The equiform differential geometry of curves in the pseudo - Galilean space ∗

In this paper the equiform differential geometry of curves in the pseudo-Galilean space G3 is introduced. Basic invariants and a moving trihedron are described. Frenet formulas are derived and the fundamental theorem of curves in equiform geometry of G3 is proved. The curves of constant curvatures are described.

متن کامل

some characterizations for legendre curves in the 3-dimensional sasakian space

in this paper, we give some characterizations for legendre spherical, legendre normal and legendre rectifying curves in the 3-dimensional sasakian space. furthermore, we show that legendre spherical curves are also legendre normal curves. in particular, we prove that the inverse of curvature of a legendre rectifying curve is a non-constant linear function of the arclength parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Physics

سال: 2021

ISSN: 2296-424X

DOI: 10.3389/fphy.2021.660241